Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Path Generative Model Based on Conditional β -Variational Auto Encoder for Four-Bar Mechanism DesignAbstract This article introduces a novel methodology based on conditional β-variational autoencoder (cβ-VAE) architecture to generate diverse types of planar four-bar mechanisms for a given coupler curve. Central to our contribution is the novel integration of cross- and self-attention layers within the VAE framework, facilitating an encoding and decoding process that captures the complex interdependencies of mechanism parameters and associated coupler curves. We propose a unified representation scheme for four-bar mechanisms with both revolute and prismatic joints, utilizing a consistent set of joints to describe each mechanism type. To support and validate our methodology, we have compiled an extensive dataset featuring both open and closed coupler curves of the aforementioned mechanism types. Furthermore, the article introduces three metrics aimed at quantifying the efficacy of our model, alongside an innovative algorithm designed to enhance the predictive outcomes by identifying and computing cognate mechanisms.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Kinematic simulation of planar n-bar mechanisms has been an intense topic of study for several decades now. However, a large majority of efforts have focused on position analysis of such mechanisms with limited links and joint types. This article presents a novel, unified approach to the analysis of geometric constraints of planar n-bar mechanisms with revolute joint (R-joint), prismatic joint (P-joint), and rolling joint. This work is motivated by a need to create and program a system of constraint equations that deal with different types of joints in a unified way. A key feature of this work is that the rolling joint constraints are represented by four-point models, which enables us to use the well-established undirected graph rigidity analysis algorithms. As a result, mechanisms with an arbitrary combination of revolute-, prismatic joints, and wheel/gear/wheel-belt chains without any limitations on their actuation scheme can be analyzed and simulated efficiently for potential implementation in interactive computer software and large-scale data generation.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract In recent years, there has been a strong interest in applying machine learning techniques to path synthesis of linkage mechanisms. However, progress has been stymied due to a scarcity of high-quality datasets. In this article, we present a comprehensive dataset comprising nearly three million samples of 4-, 6-, and 8-bar linkage mechanisms with open and closed coupler curves. Current machine learning approaches to path synthesis also lack standardized metrics for evaluating outcomes. To address this gap, we propose six key metrics to quantify results, providing a foundational framework for researchers to compare new models with existing ones. We also present a variational autoencoder-based model in conjunction with a k-nearest neighbor search approach to demonstrate the utility of our dataset. In the end, we provide example mechanisms that generate various curves along with a numerical evaluation of the proposed metrics.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract This paper presents a novel real-time kinematic simulation algorithm for planar N-bar linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation technique that transforms prismatic elements into a combination of revolute joint and links. This gives rise to a unified system of geometric constraints and a general-purpose solver which adapts to the complexity of the mechanism. The solver requires only two types of methods—fast dyadic decomposition and relatively slower optimization-based—to simulate all types of planar mechanisms. From an implementation point of view, this algorithm simplifies programming without requiring handling of different types of mechanisms. This versatile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simulation time and structural complexity, shedding light on computational demands. Demonstrative examples showcase the practicality of this method.more » « less
An official website of the United States government
